Contact charging of lunar and Martian dust simulants

نویسندگان

  • Zoltán Sternovsky
  • Scott Robertson
  • Amanda Sickafoose
  • Joshua Colwell
  • Mihály Horányi
چکیده

[1] Dusty regolith particles accumulate charge through grain-grain contact and contact with various surfaces. These processes affect vertical and horizontal transport and may cause electrical discharges in dust storms. We report the results of a simple experimental setup used to investigate the contact charging properties of two planetary analog dust samples: lunar (JSC-1) and Martian (JSC-Mars-1) regolith simulants. In these experiments, dust particles are brought into contact with various surfaces of known work functions (metals: Co, Ni, Au, Pt, and silica glass), and the resulting contact charges on the dust particles are measured. The surfaces are in the form of a thin disc mounted horizontally in a vacuum chamber. Agitation causes the dust grains to drop through a small hole into a Faraday cup, where their charge is measured. The charge on a 100 micron dust grain is typically more than 10 elementary charges and varies linearly with dust size. The measured contact charge of a dust particle increases with repeated agitation of the surface. The average contact charge also varies linearly with the work function of the contacting surface. The contact charging with oxidized metal surfaces is found to be independent of the metal’s work function. The effective work functions of the planetary analogs are determined by extrapolation to be 5.8 eV and 5.6 eV for the lunar and Martian dust simulants, respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental investigations on photoelectric and triboelectric charging of dust

Experiments are performed pertaining to the charging of single dust particles in space due to three effects: (1) photoemission, (2) the collection of electrons from a photoemissive surface, and (3) triboelectric charging. The particles tested are 90–106 mm in diameter and include JSC-1 (lunar regolith simulant) and JSC-Mars-1 (Martian regolith simulant). Isolated conducting grains (Zn, Cu, and ...

متن کامل

Mars Dust Micromechanics: Mer Marsdial and Laboratory Observations

Introduction: In future human exploration of Mars, many challenges face us. Mars is a dusty planet and dust and windblown particulates will present one of the most significant difficulties [1]. The dust and granular regolith will challenge materials, machines, and people. Our experience with dust-covered astronauts on the Moon and with landers and rovers on Mars suggests that significant effort...

متن کامل

Toxicity of lunar and martian dust simulants to alveolar macrophages isolated from human volunteers.

NASA is planning to build a habitat on the Moon and use the Moon as a stepping stone to Mars. JSC-1, an Arizona volcanic ash that has mineral properties similar to those of lunar soil, is used to produce lunar environments for instrument and equipment testing. NASA is concerned about potential health risks to workers exposed to these fine dusts in test facilities. The potential toxicity of JSC-...

متن کامل

Lunar Dust Characterization for Exploration Life Support Systems

Lunar dust effects can have a significant impact on the performance and maintenance of future exploration life support systems. Filtration systems will be challenged by the additional loading from lunar dust, and mitigation technology and strategies have to be adapted to protect sensitive equipment. An initial characterization of lunar dust and simulants was undertaken. The data emphasize the i...

متن کامل

Electrical Phenomena on the Moon and Mars

The Moon and Mars represent intriguing and divergent case studies where natural electrical processes may occur in environments beyond our more familiar terrestrial experience. The windy, Aeolian environment of Mars likely produces substantial electrical activity via the tribo-electrification of individual dust grains that occurs during atmospheric disturbances. While there may be some analogies...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002